Lecture 5

The Hydrogen Atom
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1. The Hydrogen Atom Schrodinger Equation
The Potential Energy

For two charges, g, and q,, separated by a distance, r:

Force: f = qlqzz Potential Energy: V (r) = %9,
dre,r dre,r

If the charges are of opposite sign, the potential energy, V(r),
IS negative; i.e. attractive.

“Hydrogenlike” Atoms (H, He*, Li*, etc.)

Ze’
dre,r
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The Schrdodinger Equation

2 2 2
_h_vzl,y'l'VV/:El// _h Vz Ze

t _E
2m om 47[80I‘W ’

In this equation, m represents the mass of an electron (9.11x10-31 kg).
Strictly speaking, one should use the reduced mass, pu, of an electron and
proton. However, because the proton is ~1830 times heavier, u = 0.9995m.

Therefore, we just use the electron mass.

Because V = V(r), one can solve the equation exactly if the Laplacian is
written in spherical polar coordinates, giving:

el 1 o(.,0 1 0 ( . 0 1 0° Ze’
— > r + —— sin(é) +—— =V - y =Ey
2m | reor or) r°sin(@) 06 00 ) r°sin“(0) dp dre,r

—+

2 2 2
_h %a(rzaj+ 12(—h2) ,1 i(sin(@)aj 3 52 v - L y =Ey
2m re or or) 2mr sin(d) o0 00 ) sin“(0) oo dre,r
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2 2
i %8(r28j+ 12(-h2) _1 i(sin(é’)aj+ : 21 82
2m r° or or) 2mr sin(d) o0 00 ) sin“(0) oo

N
l L2 Operator

SO N
omrtorl or) 2mrt|” 47zgorw /

The /§0Ie dependence of this equation on 6 or ¢ is embodied in
the L2 operator.

We learned in Lecture 4 (The Rigid Rotor) that the Spherical
Harmonics, Y, .,(0, ¢), are eigenfunctions of (2

N
LY, (0,0) = L(L+0)RY, (8,0)

A

N\
They are also eigenfunctions of L,: LY, (,0)=mhY, (6,0)

Are

Z7e’
N§

v =Ey
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Baofaa) L]
amrior\ or) emr?|” 4ﬂ€0rz// /

One can remove the dependence of this equation on 6 and ¢,
embodied in L?, by assuming that:

y(r.0,0)=R(r)eY, (0,0)

This gives:

[_iii(rz 5J+ L° :|R(r)Y4m(9,¢)_ Ze? R(r)Y,.(6,0)=ER(r)Y, (6,0)

omriorl or) 2mr?

Because L%, (0,9)=(({+1)1%Y, (0,0)

B o, 0) ((0+1)h 7¢?
e G Y R(r)Y, (6,0)- R(r)Y,.(@,0)=ER(r)Y, (@,
[ P12 L) L iy, 0,0 R0 (0,6) = ER(Y,, (0,0
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{_ﬁizﬁ(rzjr}“” ] (VBT 25— R(r)Y ] = ER(1)Y TP

2m e or 2mr’ dre,r

We can now remove the dependence on 6 and ¢ completely.

[ W1 8[r2ij+f(€+l)h2 Ze’

~ R(r)=ER(r
2m e or\ or 2mr? 47[6‘“’} ) (")

We now have the “Radial Equation” for the hydrogen atom.

This equation must be solved subject to the boundary condition:
R(r) > 0asr — .

The solution to this equation is non-trivial to say the least.
We will just present the solutions below.

Note: In retrospect, it should not be surprising that the angular
solutions of the hydrogen atom are the same as the Rigid Rotor
(Lecture 4).

Neither potential energy function (V=0 for the Rig. Rot.) depends
on 0 or ¢, and they must satisfy the same angular Boundary
Conditions. Slide 7



2. The Radial Equation Solutions

The Third Quantum Number

[_ﬂii(rzﬂJJrf(hl)hz Ze’

~ R(r)=ER(r
2m r?or\ or 2mr’ 47z50r] ) ()

When the equation is solved and the boundary condition,

R(r) > 0 as r — o, is applied, one gets a new quantum number, n,
with the restriction that:

n> [/ orequivalently /<

Together with the two quantum numbers that came from solution
to the angular equations, one has three quantum numbers
with the allowed values:

n=12314, ..
[=0,12,..1n-1

m=01t112,. t/
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The Radial Wavefunctions

The functions which are solutions of the Radial Equation are dependent
upon both n and | and are of the form:

-z 2
R,.(r)=Poly Lr ] g where a, = 47[80?
na, me
Bohr Radius
Several of the Radial functions are:
Zr 2 7r
Ca, VA Zr 38,
Ro(r)=N,e ™ R, () = N30[27—18£+ 2[@] ]e
Zr ) 7
AR Zr Zr =
Ry (r)=Ny|l-—e R..(r)=N. | 6—- o 3%
20( ) 20[ ZaOJ 31( ) 31[ 3a, [3%] }
Zr 2 7r
Zr _To Zr _To
Rax )=N21Ee2 R32(r)=|\|32(£] e
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The Energies
The energy eigenvalues are dependent upon n only and are given by:

poo__Mmze 11 e 2" 1,.7% g
" 2(4rme,)ht n? 2 (4me)a, nd 20 T n?

This expression for the energy levels of “hydrogenlike” atoms is
identical to the Bohr Theory expression.

00 0)
However, the picture of electron motion 4 -k/16
furnished by Quantum Mechanics is ‘ 3 -k/9
completely different from that of the 2 -k/4
semi-classical Bohr model of the atom. -
®
C
LL
1 -k
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Examples



Show that R,4(r) is an eigenfunction of the Radial equation
and that the eigenvalue is given by E, (below).

I

Rlo(r) - Nloe K

(((+1)R"  Ze°
2mr? dre,r

]RU):ERU)

2 / 2 2
or -h—izi(rzﬂ G 20 ey = ER(r)
2mr-or\ or 2mr ma,r
Z%* 1 2j,2
E,=- = or Elz_th.iz
2(47ey)a, 1 2ma, 1

Note: the alternative forms above have been obtained using:

Azeh?

a
0 me?
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(+)R* Zi?
2mr? ma,r

o _ﬁii(rzﬂ)+
Rip(r) = Nype omrior\  or

2 OR R Z
dr a0

Zr
Nlor e ?

Zr Zr Zr
a aR Z 2 Z - - ZZ =
——N,|rif-—e ™ [+e ®(2r)| =Z—y?N. e % —
ar( drj a, 10{ { a, ] ( )] az

2
:Z—r R—Z—ZrR
aO aO

2 2 2 ZZ 212
] 12 8£r28Rj:_ ! 2 . r’R-=—"rR _ L h2R+
2m - or or 2mr? | a; a, 2ma;

212
1
El:_z hz'_z
2ma,; 1
_zr
— 1N, e *
ao 10
R

Zh’
ma,r
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((C+)R2 7

_zr 5)
_ a LA B Y
Rip(r) = Nye { 2m r? 8r( or 2mr?

1 (rzaRj__ 27’
2m r?or\ or 2ma;

Therefore:

_ﬁigtrz 0 j+w+1)h2_ Zh’
omrior\  or

2mr?

}R(r)
ma,r

Z°n* 1
- E —— il
maor]R(r) =RUT) b 2mal 1’
2
+ Ll R
ma,r
212 2 2
L h2R+ Gl R+0- 2l R
2ma; ma,r ma,r
222
__ L h2 R =ER
2ma,
212
El:_Z h2
2ma,
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3. The Hydrogen Atom Wavefunctions
The Complete Wavefunction (Complex Form)
Vo (1, 0,0)= R (r)- 0 (0)-0,,,(0)=R,(r) 2" 'P||m|(9): Ry (r) - Y, (6, 0)

Note that these wavefuntions are complex functions because
of the term, elm?,

This does not create a problem because the probability of finding
the electron in the volume element, dV = r?sin(0)drd0d¢ is given by:

P(r,8,0)dV =y *(r,8,0)y (r.6,0)r sin(d)drddy
= [R, ()£ (0) ] o [R, (r)-e" -PFl(8)] r?sin(6)drdog

= [R, (] o[ P(0) ] rsin(o)ard g
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Real Hydrogen Like wavefunction

32
s el ()"
I\ a _ |
T . 3p, = > 1/2 (E) (6 B E)m_zrjhcnsg
’ | (2)3;(2 Zr) —Zrf%a sl ’
__ ' [£ - e
4(2ar)\2 \a a _ 2" (zy”F ZR PP
1 7512 Pz = 812\ a ST " sin fcos
p.=—— | =) e E W onsp
P 42y \a - (Z)w(ﬁ Zr) sinbs
_ £ — = re §
1 AR —Zrf2a Py Blw'*\a a nose
i yagyr\a) € sl cosé L (ZY” 0, a3 cogt
512 ¢ = SlemE\a) (€ Beoso - 1)
s = — L (2Y e g psins "
T 4em i \a e A
. 1 3dzz=_l;z(5) rfe”#% gin @ cos B cos &
S (E) “(2? — 185 zﬁ)e‘”ﬂ“ o
8[{3’“’]”1 a a ﬂz

21/2 Z
= rze 21/3 gin @ cos  sin
ST

. Z —Zrj3a ;1 A
My p = 3l {Em-}lf’ (a) sin” 6 cos 2¢h
‘,2

3y = 81 [zw]lf‘( )

234 gin” @ sin 2¢b




Real Form of the Wavefunctions

It is common to take the appropriate linear combinations of the
complex wavefunctions to obtain real wavefunctions.

This is legal because the energy eigenvalues depend only on n
and are independent of | and m; i.e. wavefunctions with different

values of | and m are degenerate.

Therefore, any linear combination of wavefunctions with the same
value of n is also an eigenfunction of the Schrodinger Equation.

p wavefunctions (I = 1)

Uon(ro)= R (r)-PH(0) " = R (r) sin(f)-¢"
Von(r00)= Ry (r)-P ()€™ = R, (r) cos(f) Already real
Woa(r8,0)= R (r) - PH(0) ¢ =R (r)-sin(f) ¢ "

Slide 17



p wavefunctions (I =1) (Cont’d)

1

Y :_(W ntV 11): i[
npy \E n nl- \E

1 . . .
Vo, = fRnl(r)-sm(@)[(cos(gDH isin(p))+ (cos(p) - isin(p)) |

R, (1) sin(0) € + Ry, (r) sin(0) ¢ ]

fRnl -sin(f)cos(p) Real

_L _ L o alo Y (4
Vrp = ﬁi(wm Vo F ﬁi[wr) sin(0)-e" - Ry, (r)-sin(9)-e™ |

=
=]
~<
I

1 | - »
. ﬁRnl(r) -sin(0)[ (cos(p) +isin(p) ) - (cos(p) - isin(p)) ]

V. = V2R, (r) sin(@)sin(p)  Real
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p wavefunctions (I =1) (Cont’d)

Spherical Polar Coords.

= 2R, (1) sin(8) cos(p) X = rsin(6)cos(¢)
V iy, = fRnl -sin(d)sin(e) y = rsin(6)sin(o)
l//npz - Rnl(r)'cos(e) Z:rCOS(G)
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d wavefunctions (I = 2)
Wo(r8.0)=R(r)-P(0) ™ =R ,(r)-sin®(0) e
W (r0,0)=R(r) P(0)-¢” =R ,(r)-sin(d)cos(d) ¢*f
osnlr.0,0) = Ry (r) - P (8) €% = R,(r)-(3c0s*(9) - 1] Already real
v, (r0.0)=R(r)-P(0)e" =R, (r)-sin(d)cos(d) e

Vg (rB,0)= Roy(r)- P (0) ¢ = Ry (r)-sin®(6) ™"
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d wavefunctions (I = 2) (Cont’d.)

By the same procedures used above for the p wavefunctions, one finds:

Vis, =V = R, (r)-(3c0s*(0) 1]

1
Ve, = ﬁ(WnZl T V/nz-l) J_an -sin(@) cos(d) cos(o)
1

WndyZ = ﬁ

1
Wndxz_yz = E(anz T V/nz-z) ‘Fan -sin’ 0)cos(2¢)

(an1_V/n2—1) \/_an -sin(@) cos(d)sin(p)

1 .
Vnd,, :ﬁ(l/anZ_l//nZ—Z) \Fan -sin’ (0)sin(2¢)
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Plotting the Angular Functions

Below are the familiar polar plots of the angular parts of the hydrogen
atom wavefunctions.
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Plotting the Radial Functions

0.10
04
0.08
Rls o RlS2006
/\ 0.04 [
0.0== J
2
R\ Ra®.|
02 F ] e —
0.00
tl) I I : : 1Io : : : ; : Io
Is.1
(r RIS R2S R3S) (r R1S2 R2S2 R3s2)

R, has no nodes

R, has 2 nodes
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p 2p

Raq R,4°

(r R2P R3P R3D) (r R2P2 R3P2 R3D2)

R,, has no nodes

R,4 has no nodes

In General: (a) A wavefunction has a total of n-1 nodes
(b) There are | angular nodes (e.g. s-0, p-1, d-2)c

(c) The remainder (n-1-l) are radial nodes.
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4. Use of Hydrogen-like Atom Wavefunctions

To illustrate how the hydrogen-like atom wavefunctions may be used
to compute electronic properties, we will use the 2p, (=2p,) wavefunction.

Zr ) o
Vi =V 10 = AR(r)0 ()0 (p) = A(a—rje ** cos(6)
0

Review: Spherical Polar Coordinates

r 0<r<w Distance of point from origin (OP)

0 0<L0<m Angle of vector (OP) from z-axis

d 0<¢<2n Angle of x-y projection (OQ) from x-axis
dV =r*sin(d)drddde
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Zr

Y = Arg %o cos(d)

Wavefunction Normalization

B Zr 72

[|]y*yav =1 =[[] Are % cos(6) | r’sin(6)drddd e

r
- 2
0

1=A"[ e agr. |/ cos’(@)sin(@)do- [ " do

1= A1 -1, -1,
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_Zr

o0 - T . 2
1:A2jO r'e aodr-j0 0032(9)5|n(6’)d«9~j0 dp =A°-1,-1,-1,
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a ) 2
IR:24£?OJ I®=§ |, =27

_Zr

© — T . 27
1:A2j0 r'e aodr-jo cosz(e)sm(e)dﬁ-jo dp =AZ-1, 1,1,

5 5
1:A2-24(%j %-27[ :AZ.(% 397

- 1 (7 5 N ] ’ 572
327\ 4, V327 \ 4

Lz 1 Z 512 I

32r | 4,
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_A 1 Z 5/2
w = Are “* cos(6) A= ( )

Calculation of <r>

B T

(r):j”w*wdv :”jr Are % cos(6) | r2sin(6)drdddg

Al

(r)=A[ re dr-["cos’(@)sin(@)de- [ “dp = A1l

=— and |l,=2r Same as before

Zr 6 0 |
© - 51 a Na-Xdy — n:
|R :J'O I'5€ fdr = :120( Oj Jo Xx'e “dx L
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a, 6 2
IR:].ZO ? |®:§ |®:27Z' A=
1 (2 .. (a,) 2
N=A1 -1 -1, =—|= -120(—(’) =27
) e 327z(a0J Z) 3
(r>:4807[-a0:5ﬁ
%7 2 VA

327

d,

j3/2
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Calculation of other Averages

We use the same procedures. For example, I'll set up the calculation
for the calculation of <y2>, where y = rsin(0)sin(¢)

d,

<y2>: j“t// * vy dV= ”j[rsin(&)sin(@]z {A(ﬁje;’; cos(@)} r¥sin(6)drddd e

_Zr

(y") = [ 1% “dr-["sin*(8)cos*(6)d6- [ sin?(g)dp

_ A2
=A"-1,-1,-1, and evaluate.

Slide 31



5. The Radial Distribution Function

Often, one is interested primarily in properties involving only r, the
distance of the electron from the nucleus.

In these cases, It is simpler to integrate over the angles, 6 and ¢.

One can then work with a one dimensional function (of r only), called
the Radial Distribution Function, which represents the probability
of finding the electron between r and r+dr.
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(r R2P2 R3P2 R3D2)

Is the most probable value of r for an electron in a hydrogen
2p orbital the maximum in R,,? ?

No!! Relative values of R,,? represent the relative probability
of finding an electron at this value of r for a specific pair
of values of 6 and ¢.

To obtain the relative probability of finding an electron at a given
value of r and any angle, one must integrate y*y over all values

of 6 and ¢. S a3



One can write the wavefunction as:y (r,0,¢) = A-R(r)-P(8)-F (o)

The probability of finding an electron at a radius r, independent
of 6 and ¢ Is:

P(r)dr :LL"’*‘” rzsin(e)drded(p:LL(A-RP.F)*A.R-P-F rsin(9)drddd

P(r)dr = AR(r)*R(r)rdr-["P*Psin(9)dg | "F *Fdp

0

or |P(r)dr =Brt|R(r)[ |

where B = Ao ["P*Psin(g)d0 s [ F *Fdg

0
l.e. we've incorporated the integrals over 6 and ¢ into B

Is called the Radial Distribution Function (or
Radial Probability Density in this text)

‘P(r): Bre(R(r)[
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We'll use RDF(r) = P(r)

RDF,.
RDF ,/\\;Q
(r RDIS? RDXS? RD3S?)
This is because:
RDF, has 1 maximum R, has no nodes
RDF;, has 3 maxima R, has 2 nodes
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We'll use RDF(r) = P(r

RDF,.
RDF,,
(r RDIS2 RDP? RDID?)
This is because:
RDF, has 1 maximum R, has no nodes
RDF;4 has 1 maximum R,4 has no nodes
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Most Probable Value of r

RDF . |

RDF,,

(r RDI1S2 RDP2 RD3D2)

The most probable value of the distance from the nucleus, 1, is
given by the maximum in the Radial Distribution Function, P(r) = RDF(r)

d(Br2|R(r)[
It can be computed easily by:  4P(r) _ ( R(") ):0

dr dr
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The wavefunction for an electron in a ZZF
2p, orbital of a hydrogenlike atom is: ,, = Are “ cos(0)

We will determine the most probable distance of the electron
from the nucleus, r,

Y o
P(r) = Br2|R|2 = Brz[re 26‘0] — Brie %

d L
(Br ] 0 whenr=r
dr
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Therefore: ——™ 1 4=

One gets the same result for any 2p orbital because the
Radial portion of the wavefunction does not depend on m.
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RDF,, l

RDF,,

(r RDIS2 RD2P2 RD3D2)

By the same method, one may calculate r,,, for 1s and 3d electrons:

d
- (1s) = = These most probable distances correspond to
Z predicted radii for the Bohr orbits:
4a,
rmp(Zp):7 rnzﬂz%
9a,
rmp (Sd) - 7

Slide 40



Probability of r in a certain range

We will again consider an o
electron in a 2p orbital, for which: P(r) = Br'e ®

What is the probability that 0 <r < 5a,/Z

We will first normalize the RDF

_Zr

” © 4 T 41 a
1:_[ P(r)dr:Bj r‘e *dr=B 5:8-24(—O

0

z
aO

)

Some Numerical

Integrals
© o n!
j x"e"dx =

0 an+1

3 4 _—X
joxe dx =4.43

3 4 _ —X
jox e "dx =13.43

Slide 41



What is the probability that 0 <r < 5a,/Z

Zr

P(r)dr= BJS%/Z rie ®dr

0

5ay/Z

P0<r<53,/Z)=|

0

QD

Define: xzﬁ Then: r=-2x
a, VA

a

dr =2

Vi

5 EiO

4
P(0<r<ba,/Z)= BL(?X ex.(ﬁdxj = B-(%

5 5
1(z) ﬁj 134321343
7 24

24\ a,

Some Numerical
Integrals

j x"e ¥dx =
0 a

3 4 _ —X
Joxe dx =4.43

n!

n+1

5 4 _ —X
jox e "dx =13.43
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lr 5
i 1( 7 :
_ Rpta & B=_—| = Some Numerical
P(r)=Bre 24(a0] Integrals

n!

What is the probabillity that 3a,/Z <r < « jo x'e dx = ol

3 4 _ —X
Joxe dx =4.43

P(3a,/Z<r<mw)=1-P(0<r<3a,/Z)
j05x4e‘xdx:13.43

One can use the identical method used above to determine

that;

P(O£r£3aO/Z):%:O.18

P(3a,/Z<r<w)=1-P(0<r<3a,/Z) =1-0.18 = 0.82

Slide 43



Zr 5
- 1(Z Dy n!
P(r)=Br'e B :ﬂ(a_j _[O x'e “dx = o
0

Calculate <r> for an electron in a 2p, orbital
(same as worked earlier using the complete wavefunction)

Zr Zr

(r)= I: rP(r)dr = fooor .Brie “dr = Bj:r5e_gdr

1(Z 51 1 120 a
(r) = ‘ = =52 Same result as before.
24 [ 7

a, 5 ° 24 5 .
d, d,
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Zr 5
P(r)=Br'e * B [ j jo x"e"dx =

24\ a, a™

Calculate the average potential energy for an electron in a 2p, orbital.

voo 2l <V>:<_Ze.e1>:_2e2 <;>

Arg, T e, 1 Are, \T

! :j‘”lp(r)dr —I”E.Br“e_%dr—a NE _i_:d
e e
=)= : r=— = |6===
r/ 24\ a, z 24 | a, 4 | a,

a‘0

W)= Ze’ <1>__ Ze* 1(2)  z%’
ey \ 1 4re, 4\ a, ) 167¢,a,
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for an electron in a 2p orbital

242 2,42
Total Energy: E, =- ze 12 » E,=- Z¢
2(4rey)a, n 32,4,

Note that <V> = 2<E

Calculation of average kinetic energy, <T>

(T)+(V)=E Signs
(T >+ 2E=E <V> negative
<T> positive
(T > _ <E> negative
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6. Atomic Units

Let’s redefine
some basic units;: M.=1  (mass of electron)

e=1 (charge of electron)
h=1 (angular momentum)
4ne, = 1 (dielectric permittivity)

Derived Units Conversions

B 472'80h2

m,e’

=1 au =1 bohr 1 bohr = 0.529 A

Length: a,

2

=1 hartree (h) 1 h =2625 kJ/mol
1h=27.21eV

Energy: —2E,.(H) =
dre,a,
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Hydrogen Atom Schrodinger Equation

Sl Units
o,  Ze°
_ vy - —E
2m, drg,r e
mZ%" 1

(b7, )1 N

~ mZ%"
2(4re,)’

Atomic Units

2 r
2
ST
2 N
ZZ
E =——
. 2
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Zeeman Effect in Hydrogen

When an external magnetic field is applied, sharp spectral lines like the
n= 3— 2 transition of hydrogen split into multiple closely spaced
lines. this splitting is attributed to the interaction between the magnetic
field and the magnetic dipole moment associated with the orbital angular
momentum. In the absence of the magnetic field, the hydrogen energies

depend only upon the principal quantum number n, and the emissions
occur at a single wavelength.

- 4
h=3 Magnetic
field off,

m, /
_ .

=

M) — O — [

the transitions shown follow the selection rule which does not allow a
change of more than one unit in the quantum number ml.



